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1. Introduction

Confinement is one of the most elusive problems in QCD. There is strong experimental

evidence that quarks and gluons, which are the fundamental degrees of freedom of the the-

ory, never appear as final states of strong interactions. It is still a challenge to understand

how confinement is encoded in the QCD Lagrangian.

Following the large number of colours idea [1], it is reasonable to conjecture that con-

finement is a property of the gauge sector of the theory. Hence, it should be possible to

solve the problem by looking at the pure gauge theory, and the solution should not be

specific to a given number of colours N . For the pure gauge theory at finite temperature,

it has been shown that confinement is lost at some critical temperature Tc [2]. The de-

confinement phase transition in SU(N) gauge theories can be understood in terms of the

centre of the gauge group, which is ZN . An order parameter for the phase transition is the

Polyakov loop

L(~x, T ) =
1

n
Tr exp

(

ig

∫ 1/T

0
A0dt

)

, (1.1)

where A0 is the gauge field in the compact direction, naturally associated to the tempera-

ture T , whose length is 1/T , g is the gauge coupling and n the dimension of the fundamental

representation (in SU(N), n = N). Since one dimension is compact, gauge transformations

which are continuous modulo 2π/g are acceptable in the theory. Under those transforma-

tions, L(~x, T ) → zL(~x, T ), where z is an element of ZN . If the centre symmetry is not

broken, 〈L〉 = (1/V )
∫

L(~x, T )d3x = 0 in the thermodynamic limit V → ∞, V being the
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volume of the system. Conversely, a value of 〈L〉 different from zero implies breaking of

the centre symmetry. It is possible to show that at low temperatures 〈L〉 = 0, while at

high temperatures 〈L〉 6= 0. Hence, a centre symmetry breaking phase transition must take

place. The expectation value of the Polyakov loop can be related to the free energy F of

a static quark as

L ∝ e−βF . (1.2)

It is then natural to identify the centre symmetry breaking phase transition with the decon-

finement phase transition. In a famous paper [3], Svetitsky and Yaffe conjectured that the

universality class of the deconfinement phase transition for SU(N) gauge theory in D=d+1

dimensions is that of a d-dimensional ZN Potts model, provided that the latter has a sec-

ond order phase transition. The Svetinsky-Yaffe conjecture has been verified numerically

in 3+1 and 2+1 dimensions (see [4, 5] for recent lattice calculations). It is interesting to

remark that whenever the underlying spin model has a first order phase transition, so does

the SU(N) gauge theory.

This analysis hints toward the relevance of the centre for confinement. An independent

way to relate centre symmetry and confinement is presented in [6], where confinement

is described in terms of condensation of vortices carrying magnetic flux. The allowed N

magnetic fluxes are in one to one correspondence with the centre elements of the group.

Condensation of vortices in the confined phase means that the area spanned by a Wil-

son loop randomly intersect vortex worldsheets. The resulting cancelations determine the

so-called area law for the Wilson loop, which is one of the accepted criteria for colour

confinement. Numerical works have confirmed the vortex scenario [7]. To characterise the

transition in terms of a symmetry, the ’t Hooft loop operator can be introduced [6], which

is expected to have a non-zero vacuum expectation value in the confined phase and to

be zero in average in the deconfined phase. This behaviour has been checked numerically

in [8 – 11].

While this scenario for colour confinement is perfectly consistent, the centre symmetry is

lost when dynamical fermions are added to the action. Hence, either one gives up the idea

that confinement in the pure Yang-Mills theory and in the full theory is basically the same

phenomenon or we must assume that the centre is just a useful way to look at confine-

ment, but does not embody any fundamental physics in relation to it. One possible way

to look at this issue is to study the deconfinement phase transition in other gauge groups

that have a different centre pattern. The physics of the phenomenon being inherently non-

perturbative, lattice calculations are well suited for those investigations. In this context,

SO(3)≡ SU(2)/Z2 would be an ideal candidate: it is expected to confine (like SU(2), since

the two groups share the same algebra), but has a trivial centre. Recent results suggest that

a deconfinement phase transition takes place, but the presence of lattice artifacts (centre

monopoles) makes it difficult to extract a reliable continuum limit [12]. Moreover, the cen-

tre structure of the underlying universal covering group (SU(2)) reflects in the existence of

twist sectors, which might imply that the centre still plays a role, despite the group being

centreless.
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A different way to approach the problem is to use a fundamental group that is genuinely

centreless.1 The simplest group in this category is the exceptional group G2. There are

other properties that make G2 interesting for QCD: it contains SU(3) as a subgroup and

(as in full QCD) an asymptotic string tension does not exist, since the colour charge carried

by a quark can be completely screened by gluons [13]. The existence of two phases has

been proved in [13]. However, this does not exclude that, instead of a real phase transition,

a crossover separates the two phases. Were this the case, the physics of deconfinement in

G2 would be noticeably different from that of SU(N) gauge theories, and this would cast

serious doubts about what we can learn from G2 for confinement in more physical gauge

theories. While data reported in [14, 15] are compatible with a first order phase transition

taking place, no exhaustive and detailed study of deconfinement has been published so

far. In this paper, we shall fill this gap by studying the finite size scaling behaviour of

the plaquette, of the Polyakov loop and of their susceptibilities, from which we extract the

critical exponents for the transition. In particular we rely on the specific heat which does

not imply any assumption on the order parameter. A real transition takes place and this

transition is first order.

This work is organised as follows. In section 2 we will review the basic properties of

the exceptional group G2. Details of our lattice simulations are presented in section 3.

Section 4 contains our results and provides evidence for a first order deconfinement phase

transitions occurring in G2 at finite temperature. The implications of our findings for

possible mechanisms of colour confinement are discussed in section 5. Finally, in section 6

we summarise the main points of our investigation.

2. Basic properties of the exceptional group G2

We begin by summarising some basic properties of the Lie Group G2. In mathematical

terms this is the group of automorphisms of the octonions and it can be naturally con-

structed as a subgroup of the real group SO(7) - which has 21 generators and rank 3.

Besides the usual properties of SO(7) matrices

detΩ = 1 Ω−1 = ΩT (2.1)

we have in addition another constraint

Tabc = TdefΩdaΩebΩfc (2.2)

where Tabc is a totally antisymmetric tensor whose nonzero elements are (using the octonion

basis given by [16])

T123 = T176 = T145 = T257 = T246 = T347 = T365 = 1. (2.3)

Equations (2.2) are 7 independent relations reducing the numbers of generators to 14. The

fundamental representation of G2 is 7 dimensional. Using the algebra representation of [16]

1We use the word centreless to refer to a group whose centre is given only by the unity element.
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(we refer to appendix A for details) we can clearly identify an SU(3) subgroup and several

SU(2) subgroups, 6 of which are sufficient to cover the whole group, a useful property for

MC simulations. The first three SU(2) subgroups are in the 4×4 real representation of the

group while the remaining three are a mixture of the 4 × 4 and the 3 × 3 representations

and are extremely difficult to simulate with standard heat-bath techniques. See the next

section for details on simulations.

The following relations hold:

SU(3) ⊂ G2 ⇒ C(G2) ⊂ Centr(SU(3)) = Z3 (2.4)

in which Centr(SU(3)) is the centralizer of SU(3) (i.e. the matrices in G2 that commute

with every element in SU(3)). Intersections of centralizers of different SU(3) subgroups

give

C(G2) = {1} (2.5)

i.e. a trivial centre.

The Lie group G2 has rank 2, like SU(3). This implies that the residual symmetry

after an Abelian projection is U(1)2, its Cartan subgroup. Stable monopole solutions are

classified according to the homotopy group:2

π2(G2/U(1)2) = π1(U(1) × U(1)) = Z × Z (2.6)

i.e. we have two distinct species of monopoles, classified by elements of the discrete group

Z2, as for SU(3). An extension of the ’t Hooft tensor - the gauge invariant field of monopoles

- can be written for the G2 gauge group so Abelian monopole solutions are really possible

in this theory.

Another interesting homotopy group shows that centre vortices are absent in the theory:

π1(G2/C(G2)) = π1(G2) = 0 (2.7)

while for SU(3) for example

π1(SU(3)/Z3) = Z3 (2.8)

and

π1(SO(3)/{1}) = π1(SO(3)) = Z2 6= 0 (2.9)

as stated before. So G2 is a good playground to study the dual superconductor picture in

a theory without centre vortices, thus isolating monopole contribution in confinement.

3. Simulations of G2 lattice gauge theory

In this work we are going to investigate the thermodynamical properties of the gauge group

G2 (see also [13, 14]). To simulate the pure gauge theory

L =
1

7g2
Tr FµνFµν (3.1)

2The first equality follows from π1(G2) = 0. See for example [17].
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with the Wilson action, we used a simple Cabibbo-Marinari update (heat-bath + overrelax-

ation in a tunable ratio, for every step) for the first three SU(2) subgroups (4× 4 represen-

tation, set 1,3 and 4 in appendix A) spanning the SU(3) ⊂ G2. This simple setting cannot

be used for the remaining three subgroups because the integration measure is not as simple.

We make a random gauge transformation every n updates (tipically 1 or 2) to guarantee

the ergodicity of the algorithm.3 To study the thermodynamical properties we simulated

several asymmetric lattices Nt×N3
s of spatial dimensions Ns = 12, 14, 16, 18, 20, 24, 32 and

temporal dimension Nt = 6 (Nt = 4 only for the smallest lattice). An average of 20 βs per

lattice have been simulated. The temperature of the system is given by T = (a(β)Nt)
−1,

where a(β) is the lattice spacing as a function of β = 1/7g2. The critical behaviour of the

system has been extracted by applying the theory of finite size scaling (FSS), which has

been used to extrapolate the behaviour of the observables we have studied to the thermo-

dynamic limit (Ns → ∞). We needed histories of order 105 updates near the transition (1

week on a 1.5GHz Opteron processor for a medium lattice).

The code is highly optimized and very fast (using only real algebra), is written using ex-

plicitly assembler SSE2 instructions in single precision for the matrix-multiplication core

and run on an Opteron farm in the computer facilities of the Physics Department of the

University of Pisa.

The observables we have measured are the standard plaquette and the Polyakov loop.

A clarification is in order here. While one should expect to be able to characterise the

critical behaviour of a system by looking at the plaquette, doubts could be cast into the

usefulness of the Polyakov loop: since G2 is centreless, the Polyakov loop is not an order

parameter for a possible deconfining phase transition. In principle, phase transitions can

be reliably investigated only by using an order parameter field, whose critical behaviour

characterises the transition itself. However, in order to prove that a transition takes place

and to determine the critical indices, a non-trivial overlap on the order parameter is the

only property we need.4 Hence, if we can observe a divergence in the peak of the Polyakov

loop susceptibility (and of the specific heat, whose reliability is hard to question) we can

safely conclude that a phase transition takes place.

The theory of FSS predicts that as a function of the volume the maximum of suscep-

tibilities scale in the following way:

χ ∼ a · L γ

ν + b , (3.2)

where γ is the critical exponent of the generating quantity (in our case either the plaque-

tte or the Polyakov loop) and ν is the critical exponent related to the divergence of the

correlation length. The position of the maximum scales as

βc(L) = βc(∞) + cL−1/ν , (3.3)

3The matrices for random gauge transformation are regenerated every step by a random algorithm to

assure that no periodicities or orbits in phase space can arise.
4The reverse of this sentence is not true: no conclus?ion can be drawn from the absense of critical

behaviour in a non-order parameter field.
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where βc(L) is the pseudocritical β for size L and βc(∞) is the critical value of β. This

analysis also applies to first order phase transition, whose signature is given by γ = 1 and

ν = 1/d, with d the dimension of the system.

4. Thermodynamics of G2 gauge theory

We studied the thermodynamics of this theory using the typical observables, the plaquettes

Ps =
1

3 · 7N3
s Nt

∑

¤s

TrU¤s
Pt =

1

3 · 7N3
s Nt

∑

¤t

TrU¤t
(4.1)

where the two sums are on space-space and space-time plaquettes respectively. The peak

of the susceptibility

χP = N3
s (〈P 2〉 − 〈P 〉2) P = (Ps + Pt)/2 (4.2)

signals the phase transition point. This quantity (often referred to in the literature as

the ”lattice specific heat”) is only part of the (physical) specific heat, whose complete

reconstruction requires various correlators weighted with different coefficients; nonetheless,

this is a singular piece from which the critical scaling behaviour can be inferred.

We also measured the Polyakov loop and its susceptibility:

L =
1

N3
s

∑

~x

(

1

7

Nt−1
∏

t=0

U4(~x)

)

χL = N3
s (〈L2〉 − 〈L〉2). (4.3)

The lattices considered for the scaling analysis are only the Ns = 12, 14, 16, 18, 20 times

Nt = 6 for the following reasons. The computational cost of locating the transition grows

exponentially fast with the volume; anticipating here a first order transition, the intrinsic

problem is that two (or more) phases coexist. The simulated system tunnels between pure

phases by building an interface of size Ns. The free-energy cost of such a mixed con-

figuration is σND−1
s (σ being the surface tension), the interface is built with probability

exp(−σND−1
s ) and the natural time scale for the simulation grows with Ns as exp(σND−1

s ).

This is called exponential critical slowing down and makes simulations impractical for lat-

tices with Ns > 20 for a reliable estimate of susceptibilities. Looking at figures 4, 5 and

comparing the densities in the tunneling region for the three different lattices gives an idea

of the problem, common to all systems exhibiting a first order transition. Multicanonical

methods [18] will be needed for feasible simulations on such large lattices. The other reason

concerns the number of time slices and is related to the presence of an unphysical bulk

transition that we shall explain below (see also figure 1). Being very close to the bulk

transition, the physical deconfinement transition for Nt = 4 is extremely difficult to detect,

the signal being highly contaminated by the “noise” coming from the bulk. Nt = 6 is

needed to be sufficiently away from the bulk. By increasing furtherly Nt, one can move the

physical transition far away from the bulk transition point. Hence, choosing a larger Nt will

clean the signal from the bulk “noise”. To investigate this possibility, we performed some

simulations at Nt = 8, which confirmed the general features of the Nt = 6 simulation. The

– 6 –
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Figure 1: Plaquette susceptibility plotted against β. The peak signals the bulk transition while

the peak corresponding to the physical transition for Nt = 6 is shown in the inset. We also show

results from a simulation at T=0 on a 164 lattice (black triangle points).
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Figure 2: Comparison of finite and zero temperature simulations. In the box: magnification of

the physical transition region (reweighted curves).

displacement of the critical β was clearly visible but not sufficient to bring any practical

advantage over the Nt = 6 calculation, while the simulation time increased considerably.

For this reason, we sticked to the Nt = 6 calculation, giving up the possibility of performing

a continuous limit extrapolation of the critical temperature. However, our pilot study at

Nt = 8 suggests that there is no reason to doubt that such a continuous limit exists.

In a finite volume no divergences can arise, since the partition function is analytical.
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Figure 3: Left: scaling of the peak of plaquette susceptibility with the volume. The continuous

line is a linear fit to the data, as explained in the text. Right: FSS of the plaquette susceptibility

assuming a first order transition. For this plot, we have used the value βc = 1.395, obtained from

the fit to the position of the maximum according to (3.3).

Nevertheless critical indices can be measured by looking at the scaling with the volume of

the plaquette susceptibility (related to the specific heat CV ). The height of the peak for a

first-order transition scales with the volume V and the width and the displacement from

the real critical point of the peak position scales as 1/V (plus corrections to this leading

behaviour).

A pronounced peak is present at any volume and Nt and always at the same β ∼ 1.35.

There is no scaling with volume and no movement toward the weak coupling region passing

from Nt = 4 to Nt = 6 as we would expect for a physical transition. This transition is

the equivalent of the bulk phase transition in SU(N) gauge theories, and separates the

(physical) weak coupling region from the (unphysical) strong coupling one. The bulk peak

almost completely overshadows the real physical transition, a smaller peak in the weak

coupling region at β ∼ 1.395 for Nt = 6. This peak scales with the volume, provided

that the bulk contribution has been subtracted. This subtraction procedure is needed in

order to disentangle the physics from the discretisation artifacts. To estimate the bulk

background, we simulated the system also at zero temperature on 164 and 204 lattices (to

control systematic errors). The bulk contribution has to be subtracted from the plaque-

tte susceptibility for a correct finite scaling analysis. This procedure could be seen as a

normalisation of the free energy following the request that this quantity be zero at zero

temperature. The influence of the bulk transition on the plaquette susceptibility is shown

in figure 1. The nature of the two transitions manifests itself comparing finite temperature

and zero temperature simulations in figure 2. The integral of the difference between the

two curves is the free energy density:

f

T 4

∣

∣

∣

β

β0

= −N4
τ

∫ β

β0

dβ′(P0 − PT ) (4.4)

in which P0 and PT are the mean plaquettes at zero and finite temperature respectively.

At the bulk transition f is zero within errors and develops a value different from zero at
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Figure 4: Normalized densities of the Polyakov Loop in a semilog plot for β varying in the range

from 1.35, the critical coupling of the bulk transition “βbulk”, to 1.401, in the deconfined phase

(data from the 6× 143 lattice for the upper graph and from 6× 163 for the other - same scales and

limits for both axes are used for better comparison). As an aside we notice that far in the confined

phase, βc < 1.395, the Polyakov loop is zero within errors and this feature can not be explained on

the ground of any manifest symmetry of the system. Continues on next page

the physical transition.

The MC time history of the plaquette is displayed in figure 6 (left), and shows a two-phase

structure typical of first order phase transitions. The extracted maxima of the plaquette

susceptibility (∝ CV ) using the reweighted data are shown in figure 3. Maxima and their

errors are estimated by a simple inspection of the reweighting output. A linear fit of the

form y = a ·x+ b (see eq. 3.2) gives a = 0.00079(14) ·10−3 , b = 0.98(62) ·10−3 , χ2
red = 1.35,
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Figure 5: Continues from last page (6 × 203 lattice).

0 10000 20000 30000 40000 50000 60000 70000
MC time

0,49

0,5

0,51

0,52

Pl
aq

ue
tte

0 1e+05 2e+05 3e+05 4e+05 5e+05
MC time

-0,2

-0,1

0

0,1

0,2

0,3

0,4

0,5

Po
ly

ak
ov

 L
oo

p

Figure 6: Left: MC history of the plaquette (β = 1.3594, 123 × 4). Right: A typical Monte Carlo

history of the Polyakov loop (data from β = 1.395, 203 × 6).

providing good evidence for a first order phase transition. A fit according to eq. (3.3) gives

βc(∞) = 1.3950(4), in agreement with results in [14, 15].

The Polyakov loop is insensitive to the bulk transition so we used it to detect the position

of the physical one, even if, strictly speaking, this quantity is not an order parameter. The

Polyakov loop develops an evident double peak structure typical of a first order transition

(see figures 4, 5). In this semilog plot is also clear, by looking at the relative ratio of peaks

height and valley height near the transition point, the exponential decreasing of tunneling

probability with the volume. In figure 6 we show the typical Monte Carlo history of the

Polyakov loop. Once again, a clean two-state signal appears. This reflects in a double-peak

structure of the observable shown e.g. in figure 5. The same FSS analysis as for the specific

heat again gives evidence of a first order transition, with a good χ2
red in the linear fits of peak

heights (figures 7 and 8). The parameters of the linear fit of the peak heights y = a · x + b
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Figure 7: Scaling of the Polyakov loop assuming first order. For the smallest lattice 123 × 6
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reduced); βc = 1.395 as explained in the text.
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Figure 8: Scaling of the peak of χL. The solid line is a linear fit to the data.

are a = 0.1183(2), b = 60(5), χ2
red = 0.61. A subtraction of the background is understood.

The background is assumed to be weakly dependent on coupling β. This is an educated

guess suggested by the zero temperature simulations. The background is estimated by

mean of a linear fit of the tails of the peak and being an ultraviolet effect, it is assumed to

be the same for all volumes. In practice we took the smallest lattices 6× 123, 6 × 143 and

some of the extremal points in tails for the fit. The number of points is unessential giving

practically the same parameters and a good χ2
red. The Polyakov loop susceptibility can be
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also used to determine βc(∞). Using formula (3.3), we get βc(∞) = 1.3951(2), which is

compatible with the result obtained from the susceptibility of the plaquette.

5. Discussion

As we have stated in the introduction, an asymptotic string tension in G2 does not exist.

Hence, one can question whether this group is confining. This is mostly a semantic problem.

In [19] it is argued that because of the absence of the asymptotic string, G2 gauge theory is

not confining. This would fit the idea of confinement as related to centre vortices randomly

piercing the Wilson loop. Sharing this view means to accept the logical conclusion that

full QCD (in which an asymptotic string tension does not exist because of quark pair

production) is not a confining theory. Since it is common understanding that QCD confines,

the essence of confinement must be found in some other property of the theory. In our

opinion, this property is a low-energy dynamics dominated by glueballs and mesons (which

are colour-singlet states). Colour-singlet states are also present in G2 at zero temperature.

At high temperature the dynamics is instead dominated by a gluon plasma. In this sense,

despite the absense of an asymptotic string tension, G2 gauge theory is a confining theory.

Accepting this statement means to infer that centre degrees of freedom are not related to

confinement (unless one want to put all the weight of the centre on the trivial element,

see [19]). Hence, the degrees of freedom responsible for colour confinement must be searched

for in other properties of the gauge group. However, this is a difficult issue and other points

of view, like the one of ref. [19], are useful to clarify the physics.

Like SU(3), G2 is a rank two group, i.e. it has two Cartan generators.5 It is then an at-

tractive possibility that like in SU(N) pure gauge theories [20 – 22] and in full QCD [23, 24]

the mechanism for colour confinement is related to the condensation of magnetic monopoles,

as it seems to be the case also for the SO(3) gauge theory [25]. An investigation in this

direction is currently in progress, and will be reported elsewhere.

6. Conclusions

We studied the thermodynamics of the Yang-Mills theory with gauge group G2. The

presence of an unphysical transition (most probably due to the choice of the discretised

action used in simulations) makes the problem harder. Nevertheless a physical transition

is found by looking at plaquette and Polyakov loop susceptibilities. Time histories of the

Polyakov loop and the plaquette show double peaks typical of first order transitions (see

also [14]). A detailed FSS analysis agrees with the first order hypothesis. Hence, we

can conclude that G2 gauge theory has two distinct phases separated by a jump in the

free energy. Those phases are immediately identified with the confined (low temperature)

and deconfined (high temperature) phase. The same dynamics characterises SU(N) Yang-

Mills theories at finite temperature. Since G2 does not have a (non-trivial) centre, our

findings suggest that the dynamics of colour confinement cannot be directly related to the

centre of the gauge group, as it has been inferred from previous works on SU(N) gauge

5A Cartan generator is a generator which commutes with all the others.
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theories. At this stage, the possibility that dual superconductivity of the vacuum explains

colour confinement is still open. The next step of our study is to investigate the FSS of

the monopole creation operator, to test if the dual superconductor picture of confinement

works also for G2 gauge theory.
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A. G2 algebra representation

In this appendix we simply report a representation of the 14 generators of the G2 group [16].

They are normalized such that tr(CiCj) = −δij. The first 8 matrices generate the SU(3) ⊂
G2. Here is also a list of 6 SU(2) subroups that cover the entire group (useful for the

Cabibbo-Marinari update):

1. C1, C2, C3

2.
√

3C8,
√

3C9,
√

3C10

3. C4, C5,
(C3+

√
3C8)

2

4. C6, C7,
(C3−

√
3C8)

2

5. (3C3−
√

3C8)
2 ,

√
3C11,

√
3C12

6. (3C3+
√

3C8)
2 ,

√
3C13,

√
3C14

B. Algebra

C1 =
1

2























0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 −1

0 0 0 0 0 −1 0

0 0 0 0 1 0 0

0 0 0 1 0 0 0























C2 =
1

2























0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 −1

0 0 0 −1 0 0 0

0 0 0 0 1 0 0























C3 =
1

2























0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 −1 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 −1

0 0 0 0 0 1 0























C4 =
1

2























0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 1 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 −1 0 0 0 0

0 −1 0 0 0 0 0






















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C5 =
1

2























0 0 0 0 0 0 0

0 0 0 0 0 −1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 −1 0 0 0 0























C6 =
1

2























0 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 −1 0 0 0

0 0 1 0 0 0 0

0 −1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0























C7 =
1

2























0 0 0 0 0 0 0

0 0 0 −1 0 0 0

0 0 0 0 −1 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0























C8 =
1

2
√

3























0 0 0 0 0 0 0

0 0 −2 0 0 0 0

0 2 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 −1 0 0 0

0 0 0 0 0 0 −1

0 0 0 0 0 1 0























C9 =
1

2
√

3























0 −2 0 0 0 0 0

2 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 −1 0

0 0 0 0 1 0 0

0 0 0 −1 0 0 0























C10 =
1

2
√

3























0 0 −2 0 0 0 0

0 0 0 0 0 0 0

2 0 0 0 0 0 0

0 0 0 0 0 −1 0

0 0 0 0 0 0 −1

0 0 0 1 0 0 0

0 0 0 0 1 0 0























C11 =
1

2
√

3























0 0 0 −2 0 0 0

0 0 0 0 0 0 −1

0 0 0 0 0 1 0

2 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 −1 0 0 0 0

0 1 0 0 0 0 0























C12 =
1

2
√

3























0 0 0 0 −2 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

2 0 0 0 0 0 0

0 −1 0 0 0 0 0

0 0 −1 0 0 0 0























C13 =
1

2
√

3























0 0 0 0 0 −2 0

0 0 0 0 −1 0 0

0 0 0 −1 0 0 0

0 0 1 0 0 0 0

0 1 0 0 0 0 0

2 0 0 0 0 0 0

0 0 0 0 0 0 0























C14 =
1

2
√

3























0 0 0 0 0 0 −2

0 0 0 1 0 0 0

0 0 0 0 −1 0 0

0 −1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0

2 0 0 0 0 0 0






















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